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ABSTRACT

In is report, we discuss accurate and robust sliding mode tracking control for
highly nonlinear robot manipulators using a disturbance observer. To eliminate the
chattering problem existed in conventional Sliding Mode Control (SMC) approach,
which is caused by modeling errors and uncertainties. The efficient compensation
of the disturbance observer has been introduced.

The proposed sliding mode control is presented in two theorems. The bounded
stability of the proposed control method is proven and the efficiency of the control
algorithms has been demonstrated by simulations for a position tracking control

of a two-link robot subject to parameter and payload uncertainties.
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1 Introduction

The overall robot control problem can be divided into two phases, trajectory planing and
control phases. The trajectory planing is the planing of the desired time trajectory from
an initial position to a desired position of robot manipulators with collision avoidance if
necessary. The control phase is the tracking control of robot manipulators to track the de-
sired trajectory planned in the trajectory planning phase. This tracking control phase is
the field of our concern in this paper. The strategies for designing a robust and accurate
tracking controller for a highly nonlinear robot manipulator have been studied enthusiasti-
cally in order to extend its application fields. There are several approaches to attempt to
obtain the desired tracking performance such as, Computed Torque Method (CTM) [1-3],
Adaptive Control [4, 5], Sliding Mode Control (SMC) [6-13], and so on [14]. Each method
has its merits and shortcomings. The CTM normally provides a feasible controller if the
exact knowledge of the manipulator dynamics is available. However, for a large amount
of applications, it is impossible to obtain the complete dynamic model of robots, due to
modeling uncertainties, parameter variation and unknown payloads. These uncertainties,
especially the error of inertia matrix, may result in the instability of robot systems. All of
highly nonlinear model dynamics are taken into account in order to calculate the control
input which is a hard load in view of the computation time. Thus the optimal trade-off is
made between approximate modeling of the robot manipulator and its output performance.
The CTM is sensitive to modeling errors which come from linearization and approximation
o” nonlinearities, uncertainties in physical systems, and disturbances [3].

In order to give the robustness to modeling uncertainties and parameter variations, adap-
tive algorithms for a highly nonlinear robot manipulator are considered such as Self-Tuning
and Model-Reference Methods but essentially nccd an adaptation mechanism for the pa-
rameter identification resulting in a heavy computation burden, complexities, and a high
cost for the digital implementation. As another robust controller different from the adaptive
approach, SMC using Variable Structure Systems (VSS) for robot arms is studied by many
researchers recently [6-13]. The desired performance with a simple control structure can
be obtained in the existence of the acceptable model error and unknown payload using the
"sliding mode”. In the sliding mode, it is well known that the controlled system is robust
to the bounded parameter variations and disturbances {17, 18]. The other advantages of a
SMC are that the output performance -an be predetermined by a sliding surface and there
is no overshoot in regulations. The first application of SMC to robot manipulators seems to
be in the work of Young dealing with a set point regulation problem [6]. A modification of
the Young controller was presented by Morgan [8]. Other SMC of robot manipulator may be
found {10-12]. The SMC unfortunately has a problem that the motion trajectory of system
changes frequently in the vicinity of the sliding surface due to a high frequency switching
of the input which is called as " chattering”. Because in order to guarantee the existence of
the sliding mode, the control has imperatively the discontinuities designed by the maximum
bound of model errors or uncertainties. The conventional SMCs for robot manipulators use
the feedforward compensation by using an available model dynamics, there exist inevitable
chattering due to model errors or uncertaintics in system parameters. To alleviate this
problem bounded layer method or saturation function [9] are used instead of discontinuous




parts. These methods are based on ihe try-and-error not a systematic approach and not
enough to obtain the desired performance with the satisfactory tracking error. Thus as pos-
sible as the exact compensation of the high nonlinear interactions in robot link systems is
essential to obtain the good performance without chattering. Using the multirate sampling
concept, a SMC with an off-line feedforward compensation for the nonlinear interaction of
robot manipulators using an available model is presented.

In this paper, design of a sliding mode control algorithm with an efficient on-line com-
pensation for robot manipulators is studied for robust and accurate tracking of the desired
trajectories. The proposed control consists of two parts of the efficient compensation and
the sliding mode only based on the nominal inertia matrix of robot manipulators. This
compensation technique is responsible for not only highly nonlinear interactions but also
modeling errors of the inertia matrix using the acceleration information and the nominal
inertia matrix. The sliding mode control is applied to the compensated dynamics of robot
manipulators to obtain robust and accurate tracking performance with the correction of
compensation errors in view of the real implementation using the microprocessor. The sta-
bility of the proposed SMC is deeply analyzed in sense of Lyapunov, summarized in two
main theorems with a preliminary lemma. Based on this analysis, the given desired track-
ing specifications can be satisfied by a proposed SMC. The design of the proposed SMC is
independent of the uncertainty parameter space. Thus there can be no chattering due to
modeling errors or uncertainties.

The rest of the paper is organized as follows. Section 2 gives the mathematical basis for
a stable SMC design by Lemma 1. In Section 2, a new SMC with the efficient compensation
is proposed, and its stability is analyzed in Theorem 1. A modified control is then presented
in Section 3 and another more efficient approach is proposed in Section 4. Its stability is
summarized in Theorem 2. The simulation studies for the proposed algorithms are carried
out in Section 5 and conclusions are presented in Section 6.

2 Mathematical Work

The motion equations of an n degree-of-freedom manipulator can be derived using the
Lagrange-Euler formulation as

J(q(t), ¢) - 4(t) + D(q(1),4(t), 8) = 7(¢) (1)

where J(q(t),#) € R™*" is a symmetric positive definite inertia matrix. D(q(t),q(t),0) € R*
is called a smooth generalized disturbances (SGD) vector including the centrifugal and Corio-
lis terms H(q(t),q(t),#) € R*, Coulomb and viscous or any other frictions F(q(t),q(t).0) €
R™, gravity terms G(q(t),¢) € R".

D(q(t),4(t). &) = H(q(t),4(t), ¢) + F(q(t),4(t), 8) + G(q(t),9)

where 7(t) € R" is an input vector, q(t), 4(t), and g(t) € R™ are the generalized position.
velocity, and acceleration vector, respectively, ¢ is a vector composed of the parameters of
robot manipulators (i.e. the masses, lengths, offset angles, and inertia of links). Exact mod-
eling of robot dynamics is difficult because of parameter uncertainties, unknown f{rictions.
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payloads variations. Therefore, by using estimated parameters in the model, we express the
model of the robot system (1) as follows

Jla(t),8- d(t) + D(g(2), d(t), 8] = 7(2). (2)

The objective of robot trajectory control is to follow the desired trajectories gq4(t), qa(t).
Ga(t) computed in planning phase. Let’s define the state vector X(t) € R*™ for SMC as

X(t) = [Xa () Xa(8)"]" (3)
where X(t) and X3(t) € R" are the trajectory errors and its derivative
X1(t) = e(t) = (qa(t) — q(t))
Xa(t) = é(t) = (qa(t) — 4(2)). (1)
Then the state equation of the robot system becomes

. 0 7 0 0 0
K8 = [ 0 0 ] X (””[ Ja(t), ) ]"(”*[ Ja(),8)" - D(a(t), (1), ) } +[ ) } '
(5)

An augmented sliding surface vector s(t) is defined as
S(t):——'Xz(t)'*'Ku'Xx(t)+Kp~/X1(t)dt (6)

where K, and K, € R™*" are gain matrices. The ideal sliding dynamics defined by Equation
(5) is the trajectories ¢*, ¢*, §* € R™ which satisfy the following equation

X3+ K, - X;(t)+ K, - X1(t) = 0. (7)
Or _
X*(t)=A- X*(t) (3]

where

- —_ (q (t) - .(t))T n —_ 0 I 2nx2n
=] ) e | e a=| L i e

We can choose K, and K, so that all the eigenvalues of A have negative real parts, which
guarantees the exponential stability of the system (7), i.e., there exist positive constants i\’

and « such that
Fet < K- e ()

where || - || is the induced Euclidean norm [15].
Now, we will state the following lemma as a prerequisite to the two main theorems.
Lemma . : If the sliding surface defined by Equation (6) satisfies || s(t) ||< v for any
t > to and || X(to) ||< v/ is satisfied at the initial time, then

I Xa(t) 1< & (10a)
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| X2(¢) ||< €2 (10b)

is satisfied for all t > ¢y where €, and ¢; are positive constants defined as following

K K
a=—-7 =7 [1+2-—], Z=KK]|. (10c)
Proof [16]
Define a new state, X4(2), to be an integral of the state X;(t), i.e.,
t
Xo(t) = Xl(u)du, Xo(to) = 0. (11)
to

then Xo(t), the augmented sliding surface (6) can be rewritten as
s(t) = Xo(t) + Ko - Xu(t) + K, - Xo(t). (12)

If we define a new state vector X(t) = [X,(¢)T, X;(t)T]7, thus we have the following state-
space equation

X(t)=A-X(t)+ [ ‘1’ ] - s(t). (13)

Where s(t) may be considered as bounded disturbances, || s(t) ||[< 7. The solution of
Fquation (13) is

X(t) = ertt) . X(t,) + t[eA(t'“) . [ (1) ] - s(u)]du. (1)

From Equation (9) and boundedness of s(t), the norm of X(t) becomes

v _ t
| WIS K- e Xt |+ [ ) | du [ : ] &
to

o K _
FX@ NS — -7+l X(t) | _.;l] LK - emnli-t0)

K
S‘y-—; forall t > t,, (15)
which drives X,(t) to satisfy the following inequality

P ACY R

From Equation (12) we have
Xa(t) = s(t) ~ [K,K,) - X(t). (16)
then by using the result of Equation (15)
K
| X0 1511+ 2]
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for all ¢t > t, which proves (10b) and therefore we complete our proof.

Lemma 1 implies that the tracking error of the trajectory and its derivative are uniformly
bounded, provided that the sliding surface is bounded for all time ¢t > ¢,. Using this results
of Lemma 1, we can give the specifications of tracking errors dependent on convergence rate
which is determined by the sliding surface, (9). In the next section, we are going to design
a controller with efficient compensation which guarantees the boundedness of s(t), i.e., if
| s(¢) ||< « for a given v, then the trajectory error is bounded in virtue of Lemma 1.

3 Efficient Sliding Mode Control for Robot Manipu-
lators

There are a variety of disturbances acting on robot manipulators, which make robust tracking
control highly desirable. It is commonly noted that the generalized nonlinear disturbances.
D(q(t),q(t), @), should be compensated to improve performance. For sliding mode control of
the robot system (4), the equivalent control of the augmented sliding surface (5) is obtained
17, 18]

rea() = D(g(t), 4(8), 8) + J(q(t), ) - (da(t) + Ko X + K, X:) (1)

The SGD D(q(t),q(t), #) is included in an equivalent control, 7.,(t). SGD is generally com-
plex, and difficult to be calculated directly due to uncertainties in the model.

In the paper, using the efficient estimation method so called disturbance observer, we
consider the following continuous control input, 7(t)

7(t) = 7e(t) + 7(2) (13)

Where 7.(t) is the compensation term for SGD as well as the error of nominal inertia matrix.
is not the direct calculation from D(q(t),¢(t), #) in the model (2) but the efficient estimation
of the generalized disturbance, D(¢(t), ¢(t), ¢) only using the nominal inertia matrix, Jy.
of the model (2) and an available acceleration information which can be obtained from the
speed information by means of Euler method.

T(t) = 7(t) = JIn - 4(2)
= D(q(t),4(t),8) + AJ(q(t),8) - §(t) — J(q(t),8) - AG(t) — Ar(t) (19)

where AJ(q(t),#) is the deviation between the real inertia matrix and its nominal value.
Ag is the acceleration inf-rmation error to the real acceleration value, A7(¢) is the control
input delay error resulting from the digital control are defined by

AJ(q((t),8) = J(q(t),8) — In
A4(t) = q(t) - 4(t)
Ar(t) =1(t = h) — 7(t)
where h is the sampling time. The second term in Equation (16) is defined as
() = (T_'Cv(t) + 7(?)) (20)
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where 7.4(t) is the modified equivalent control for the compensated dynamics of Equation
(1), and is designed so that the error dynamics of the controlled system has the sliding
surface dynamics defined by Equation (7). It is defined as

Tea(t) = In - (qa(t) + K. - Xa + K, - Xy). (21)

. (t) is the feedback term of the sliding surface resulting from the compensation error

s(t)
.(t) = JIn - {kya - s(t) + kya - 0a(t)}, 0u(t) = —————.
X ) { x1 ( ) X ” S(t) ” +6
If we apply the input control torque given by Equations (18)-(22) to the robot system (3).
we obtain the following equation

Xo(t) = —J7M(q(t), 8) - (AJ(q(t), ) - §(t) — AT(2)) + Ag(t) +

5(t)

LI Q08) - I [t KXot Ky X+ k() k-
IHa(t),0) - I e + Koo Xa Ky Xt b s(t) + b s

and the dynamics of s(t) is expressed in the following simple form

s(t)

TS +5 .

s(t) = m(t) = [kyr - s(t) + bz -

where n(t) € R™ is the resultant disturbance vector given by
mi(t) = ni(A§(1), A7, 8)
= J3' - J(q(t), d) - AG+ IR AT(2). (25)

For some positive constants ¢, and £, defined in (10c¢), let the constant .V be defined as
follows

V= {2%{|l n1(AG(t), Ar(t), 8) s q(t) € B(eriqa(t)) A 4(t) € Blesidu(t))}  (26)

where the matrix norm is defined as the induced Euclidean norm, and for a positive number
p > 0 and a vector v € R" the boundary set defined by as

B(piv) ={we R"||w—-v||[< p}. (27)

In Equation (25), the resultant disturbances are mainly dependent on the acceleration infor-
mation error and the control input computation delay error other than system uncertainties
or modeling errors of robot manipulators. The disturbance observer can compensate mad-
eling errors of the inertia matrix besides SGD. Thus the SMC design is independent of
maximum bound of modeling errors in the parameter space but dependent on only the ac-
celeration information error and the control time delay due to the digital implementation.
Since a control input is continuous and accurate acceleration can be obtained, the maximum
of resultant disturbances, V becomes very small, thus we can design a new SMC without
chattering.




Now, a stability property of the system (5) with control laws (18) -(22) will be stated in
the next theorem.

Theorem 1 : Consider the robot system given by Equations (18)-(22). Assume that for
some positive v, || s(t,) [|< v and || z(¢,) ||< 7/« are satisfied at the initial time ¢ = ¢,, and

if the gain k,, satisfies
kya >N —kyp-6 (28)

for given ky; and &, then the global control system is uniformly bounded (i.e. the solution
X is uniformly bounded at origin in state space) for all ¢t > t, except || s(t) ||> 1 where

is defined by N
[6 + =) 5N

m=val+ 8- a, G B = L (29)
x1

Proof
If we take V(t) = 1/2s7(t)s(t) as a Lyapnuov candidate and differentiate with respect 10

time, it follows

dv(t) .
— = sT(t) - 8(¢)
= sT(t) sy (t) — sT(t) {hyr - s(t) + kya —Sﬂ——} (30)

Il s(t) | +6

[f we use the matrix inequality
le"Ay <zl -Hyll- 1Al

it follows

au

2
LD s Ul =k IO = ke i

So that || ny(t) ||[< N is satisfied from the definite of N, and we can rewrite Equation (31)
as

(31)

e L sl
dt SIEs(e) AN = k- || s(2) || —ky2 TS +5}
” S(t) ” 'kxl 2 |
I s(t) | +6 s +2-ar- || s(t) || =6} (32)
at t = t;. If the gain ky1, and k, satisfy the condition (27),
dV(t) N
dt <0 (33)

at ¢ > ¢, until || s(t) [|> /a? + 87 — a; which completes the proof of Theorem 1.

Theorem 1 guarantees the uniform bounded stability of the proposed continuous SMC
(18)-(22) for robot manipulators. This controller is shown in Fig. 1, its structure is simple.
The sampling time can be as small as possible so that the acceleration information is accurate
enough, therefore, the maximum values N is very small. If a smaller é is used in control
algorithm (22), then the lower bound of 7, is decreased. The lower bound 7; can be decreased
by increase of k,, for given § and N so that 5, is sufficiently small in comparison to ~v. If

7




the initial position error is small which is reasonable in case of the known initial state of
robot manipulators, it is evident that s(t) remains closer to the sliding surface s(t) = 0 and
the trajectory error is also small, hence we may assume small 4 for the desired specifications
of the small trajectory errors. The feedback control (18)-(22) designed by Theorem 1 and
Lemma 1 maintains the stability of the system with the prescribed performance. To design
the proposed sliding mode controller, firstly the desired sliding surface defining which defines
the desired error dynamics is chosen, i.e., the gains, K, and K, are specified. Then the gains,
ky1 and ky2, in Equation (22) are selected based in Theorem 1. The design does not need
the information of maximum bound of system parameter variations or uncertainties because
of the efficient on-line compensation. The proposed SMC can be designed to be accurate
and robust against to parameter uncertainties.

+ (1)
0 s w0

+
+4 4 +4
kasw+kaow|
‘ : ‘ B
s()=X2+KvX1 Lo N
Kel| Kv +KplXidt ] Te(=t()-INg()

T . | x2 } T Disturbance Obse
qa(t)
q da(t ) o —_rO?

Trajectory Tracking Controller

Fig. 1. The block diagram of the proposed SMC.

s(t)

—_— for Theorem 1
ls(Oll + &
o(t) =

Y for Theorem 2
Is(t + &

4 Modified Sliding Control for Robot Manipulators

In this section, we present a modified control algorithm from the control law of the previous
section so that the efficient computation is possible in the case of the digital implementation.
The modification replaces 7,(t) in Equation (22) by

T(t) = =JIn - (k- 8(t) + kya - os(t)) (1)

8




where the i — th element of vector oy(t) = [01(¢), a2(t), - -,0.(¢t)]F is defined by

S;(t)

oi(t) = 50 [ 56 (35)
If we apply the control given by Equations (18)-(21) and (34) to the system (1), then
$(t) = na(t) = kxa - s(t) = kya - ou(2) (36)

where the disturbance vector n,(t) is also given by Equation (25). Let’s denote its : — th
element by ny;(t). For some positive numbers 7, ¢ and £ > 0, let the constant V4 be defined
as follows

Ny = sup {Z | n1i(AG(2), Ar(t),(f; I; q(t) € E(er;qa(t) A q(t) € E(e2:4(t))} (37)

t,zw,y,

where the neighborhood set is defined as
E(piv) ={w e R" | w - v]leo< p} (33)

for any scalar p and vector v € R", where || - || 1s the infinity norm of the vector which is
defined as the maximum absolute value of its components.

Theorem 2 : Consider the robot system (5) with controls given by (18)-(21) and (31).
Assume that for some v > 0, || s(¢,) ||o=> 7 and || z(¢,) ||o< /% is satisfied at the initial

time t,. If the gain k. satisfies
kya < Noo = 6+ kyy (39)

for given ky; and é, then the global control system is uniformly bounded (i.e. the solution
X is uniformly bounded at origin in state space) for all s(t) ||£ 12 where 1, is
defined by

§+ {maf=) 5N,
m =\/af + 35 — o, 01=*—+7 B = kloo- (10)

x1

Proof
If we take V/(t) = 1/2s7(t)s(t) as a Lyapnuov candidate and differentiate it with respect
to time, it fol]ows
dv(t) :
Tt (t)-s(t)

= {7 na(t) = sT(t) - (Kt - s(t) + kyz - s(8) - 0u(1))}- (41)

We can rewrite the above equation as

- () — s )2 — ST 12
{Z h(t) Zk\d ,(t) zk)& lS t)l+6} (L)

] J

d V

So it follows

dV s
['s;(8) ] +6

<{Z|3 !nh)‘_zkxl' Zk"z | s;(t)




From the definition of Ny and norm inequality of || s(¢) ||>]| s(t) ||, We can rewrite the
equation (43) as

dv(¢) || s(2) lloo
2TV« —koy- S S | B LA |
dt I s(t) lloo {Noo = kxae |l $(2) lloo —kxe 15() oo +5}
ki ] () lloo 2
T e —— . t . . — . i
S (50 12 42 0 [ 5(0) 1 =) (44)
If the gain k,,, and and k,2 satisfy the condition (39),
dv(t) -
7t <0 (43)

at t > t,, until || s(t) {|> /a3 + 8% — a3, the proof of Theorem 2 is completed.

The desired performance of the modified controller for robot manipulators can be ob-
tained by using Theorem 2. The feedback sliding mode control (18)-(21) and (34) maintain
the uniformly bounded stability of the system as far as the condition (39) is satisfied, but
Theorem 2 is only a sufficient condition for stability. Under the same conditions, V., defined
in Equation (37) is always larger than N defined in Equation (26). Thus as shown in Equa-
tions (39) and (40), for the same trajectory error the gains of the modified controller are
designed to be larger than those of the SMC defined in section 3. Under the same conditions
for the both controls, the error of the modified version be smaller than that of the original
SMC because of || s(t) ||>] s:i(?) |-

5 Numerical Simulation

The numerical simulations are performed for the purpose that is to show accurate and
robust trajectory tracking property of the proposed algorithms compared with the CTMI.
The SCARA-type two degree-of-freedom manipulator dynamics [1] used for simulation are
as follows . . . .

[T] J =1, [ 5m1+5m2+m202 -3-m2+§m202 J . [ q1 :l

1 1 1
T2 3m2 + 3m2C, 3M2 92

+1y- [ —%mzslﬂi% - 7’.7;2524142 ] 1. [ 3mgCh +1‘;-ng012 + magCi ] (46)

2M252¢) 3m29C12
where Cy, S; and C;; imply cos(q;), sin(q;) and cos(q; + g;), respectively. The parameters
are my = my = 0.782[kg], | = 0.23{m] and g = 9.8]m/sec?]. The reasonable modeling error
of robot dynamics is produced for each mass and length. Moreover, unknown payload is
reflected to my. To test the robustness to modeling uncertainties and unknown payload.
simulation studies are carried for the CTM and two proposed SMCs under three case condi-
tions, i.e.,(i):no modeling error and no unknown payload, (ii):10 [%] modeling error and 0.5
(kg] unknown payload, and (iii): 10 (%] modeling error and 1 [kg] unknown payload. The
desired trajectory for each link was

@ -a) , (4—q) 3i"(”t)} 180 [degree] (47)

t _— ‘ .
q4(t) = {qi + 3 57 -
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where the initial position ¢; = [0.0 0.0]7 [degree], and the final position ¢; = [60. — 60.]"
[degree]. We take the execution time of the trajectory tracking as 2 seconds. The necessary
time for the computation of model (2) was selected to be 2 [msec], and this computation time
is considered as a time delay of input for the simulation of the CTM. The gain k, = 400 - /.
k, = 40 - I were used in the sliding surface (6) so that the ideal sliding dynamics have
its eigenvalues to be assigned to -20. The corresponding constants defined in (9) , A" and
x become 14.7 and 10. Using the results of Lemma 1, the trajectory error, X, and its
derivative, X3, are bounded as ¢, = 1.47-+y and ¢; = 592 - v for a given « of the constraint to
the sliding surface. The smaller bound of the sliding surface, v, the smaller trajectory error
and its derivative. For 0.01 [degree] maximum tracking error, ¥ was selected to be 0.0063.

Now, in order to obtain the above prescribed tracking performance , the proposed SMC's
are designed to make the sliding surface be bounded by 7. Assuming the initial position
of the robot manipulator is known, the conditions, {|X(¢,)|| < /& and [|s(t,)]| < =~ are
satisfied at initial time t = ¢,. The controller gains k,; and k., were selected to be 30 and
10 which satisfy the conditions (39) and (45) for given § = 0.05 and N or N, so that
and n, are sufficiently small with respect to the selected ¥ by Theorem 1 and Theorem 2.
For comparison of the three case conditions, the N and N, are summarized in Table 1. As
the payload increases, the value N and N increased. As a results the lower bound of ..
becomes larger such that the stability of the system is maintained. The simulation block
diagram of proposed algorithms are shown in Fig. 1. The proposed trajectory tracking
controller is consisted of the modified equivalent control, 7.,(t) (21), feedback of the sliding
surface, 7, (t) (22) and disturbance observer, 7.(t) (19), terms.

The gains K, = 40 - I, K, = 400 - I were used in the CTM algorithm. The simulation
results of the CTM are shown in Fig. 2. The tracking errors for the CTM are shown in
Fig. 2-1 (a) for link one and (b) for link two, and its corresponding control inputs are shown
in Fig. 2-2 (a) for link one and in Fig. 2-2 (b) for link two. As the payload increases.
the root-mean-square (rms) error is rapidly increased from 0.0073 [degree]| to 3.6301 {degree]
using the CTM algorithm. Thus the CTM need to be added the robust algorithm against
model uncertainties and unknown payloads.

The results of the proposed SMC simulations are shown in Fig. 3 for Theorem 1 and
in Fig. 4 for Theorem 2. The tracking errors of the proposed SMC are presented in I'ig.
3-1 and Fig. 4-1. The tracking errors by Theorem 2 are smaller than those by Theorem
1 because the norm of the sliding surface in (22) is greater than the infinity norm of the
sliding surface in (35). The correspondent continuous control inputs and sliding surfaces are
depicted in Fig. 3-2 and Fig. 3-3 for Theorem 1 and in Fig. 4-2 and Fig. 4-3 for Theorem
2. The simulation results in view of maximum and rms values are summarized in Table 1.
Using the proposed algorithm, the resultant error maintains nearly unchanged Especially.
note that using the proposed algorithm the tracking error is not increased so much as the
increase of the palyload error, for the case Theorem 1 and Theorem 2.

From the simulations,we have found that the proposed two algorithms provides a better
performance than the CTM algorithm with respect to the tracking errors. Moreover, the
tracking errors of the proposed algorithms satisfy the prescribed specifications as shown in
Fig. 3-1 and Fig. 4-1 subject to parameter and payload uncertainties.

11




Table I. Numerical comparison between CTM and proposed SMC

Error | Error |[|Control|{ Controlll Surface || Surface N N_
Method |CASE[ (max) || (rms) || (max) || (rms) | (max) | (rms)
[degreelli{degree)] (Nm] || (Nm]
1 Jo.0066]0.0073 | 3.6438 ] 3.7569
CT™M 2 §3.6375]{3.6801 [ 5.7958 || 5.8300]
3 [6.3872]6.4713] 8.0360 || 8.0453
1 [0.0004 ] 0.0005 | 3.6438 || 3.7569| 0.0015{ 0.0016]] 0.3281
THM 1| 2 [ 0.0008 [[0.0010 [ 5.3968 || 5.6014] 0.0031] 0.0034] 0.4862
SMC 3 J0.0011 [ 0.0016 ] 7.1498 7.4476'} 0.0041%! 0.0044]| 0.6462
SOl Rl Eihedd
1 [[0.0002] 0.0002 ] 3.6439 | 3.7569{ 0.0008{ 0.0008 0.4681
M 2[ 2 [0.0004 [ 0.0005 | 5.3968 | 5.6014] 0.0015{ 0.0016 0.6911
| 00021 ] 09153
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Fig. 2-1 Tracking errors for CTM algorithm
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(1) case 1 : no model error and no unknown payload
(i1) case 2 : 10 [%] model error and 0.5 [kg] unknown payload
(iii) case 3 : 10 [%] model error and 1.0 [kg] unknown payload
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Fig. 3-1 Tracking error for Theorem 1 of proposed SMC

(i) case 1 : no model error and no unknown payload
(i1) case 2 : 10 [%] model error and 0.5 [kg] unknown payload
(iii) case 3 : 10 [%] model error and 1.0 [kg] unknown payload
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Fig. 4-1 Tracking errors for Theorem 2 of proposed SMC

(i) case 1 : no model error and no unknown payload
(11) case 2 : 10 [%] model error and 0.5 [kg] unknown payload
(iit) case 3 : 10 [%] model error and 1.0 [kg] unknown payload
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6 Conclusions

[n this paper, continuous sliding control algorithms have been proposed for accurate and
robust tracking control of robot manipulator and their stability properties are analvzed in
detail. As a preliminary work, the relationship between the maximum bound of the tracking
error and that of the sliding surface is presented in Lemma 1. The continuous sliding mode
control algorithm with disturbance observer is proposed and its uniform bounded stability
property is proven in Theorem 1. To improve efficiency, a modification to the proposed
algorithm has been preceded and its stability property is presented in Theorem 2. Under
these control algorithms, the tracking errors can be reduced to the prescribed range without
chattering problems based on the above stability analysis.

The simulation results have shown that the proposed algorithms are very efficient for the
trajectory tracking and robust to the modeling inaccuracy and unknown payloads.
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